KOMBINASI DAN PERMUTASI


Kombinasi

kombinasi merupakan sebuah kumpulan dari sebagian atau seluruh objek dengan tidak memperhatikan urutannya. di dalam kombinasi, {AB} dianggap sama dengan {BA} sehingga sebuah kombinasi dari dua objek yang sama tidak dapat terulang.

Rumus kombinasi dari suatu himpunan yang mempunyai n elemen dapat dituliskan sebagai berikut:

Rumus Kombinasi

C(n,r) = nCr = nCr =     n!     
                                  r!(n-r)!

Mari kita amati penggunaan rumus tersebut untuk menyelesaikan soal-soal di bawah ini:


  • Contoh Soal 1

Manuel Pelegrini membawa 16 pemain saat Manchester City melawan Liverpool di Etihad Stadium. 11 orang diantaranya akan dipilih untuk bermain pada babak pertama. jika kita tidak memperhatikan posisi pemain, berapakah banyaknya cara yang dapat diambil oleh pelatih untuk memilih pemain?

Pembahasan:

Karena tidak mementingkan posisi pemain, maka kita gunakan rumus kombinasi:
16C11       16!        =  16 x 15 x 14 x 13 x 12 x 11!  
              11!(16-11)!                      11!5!                          

                                  =          524160         =  524160  = 4368
                                        5 x 4 x 3 x 2 x 1          120




  • Contoh Soal 2

Sebuah ember berisi 1 buah alpukat, 1 buah pir, 1 buah jeruk dan 1 buah salak. berapakah banyaknya kombinasi yang tersusun dari 3 macam buah?

Pembahasan:

diketahui n = 4 dan r = 3, maka:

4C      4!        =  4 x 3 x 2 x 1  =      24         =  24  = 4
              3!(4-3)!           3!1!               3 x 2 x 1         6




Permutasi

Di dalam ilmu matematika permutasi diartikan sebagai sebuah konsep penyusunan sekumpulan objek/angka menjadi beberapa urutan berbeda tanpa mengalami pengulangan.

Di dalam permutasi, urutan sangat diperhatikan. setiap objek yang dihasilkan harus berbeda antara satu dengan yang lain. kita ambil contoh, urutan huruf ({ABC} berbeda dengan {CAB} begitu juga dengan {BAC) dan {ACB}). Rumus untuk mencari banyaknya permutasi n unsur jika disusun pada unsur k di mana k ≤ n adalah:

Rumus Permutasi

P(n,k) =   n!  
 (n-k)!


Untuk memahami rumus tersebut, perhatikan pembahasan soal di bawah ini:


  • Contoh Soal 3

Di sebuah sekolah ada 4 orang guru yang dicalonkan untuk mengisi posisi bendahara dan sekertaris. Coba kalian tentukan banyaknya cara yang dapat digunakan untuk mengisi posisi tersebut!

Pembahasan:

Soal di atas dapat dituliskan sebagai permutasi P(4,2), n(banyaknya guru) = 4 k (jumlah posisi) = 2
masukkan ke dalam rumus:

P(4,2) =   4!     = 4 x 3 x 2 x 1 24 = 12
 (4-2)!           2 x 1             2



  • Contoh Soal 4

Berapakah banyaknya bilangan yang dibentuk dari 2 angka berbeda yang dapat kita susun dari urutan angka 4, 8, 2, 3, dan 5?

Pembahasan:

pertanyaan di atas dapat disimpulkan sebagai permutasi yang terdiri dari 2 unsur yang dipilih dari 5 unsur maka dapat dituliskan sebagai P(5,2). tinggal kita masukkan ke dalam rumus.

P(5,2) =   5!     = 5x 4 x 3 x 2 x 1 = 120 = 20
              (5-2)!        3 x 2 x 1              6

Maka ada 20 cara yang dapat dilakukan untuk menysyn bilangan tersebut menjadi 2 angka yang berbeda-beda (48, 42, 43, 45, 84, 82, 83, 85, 24, 28, 23, 25, 34, 38, 32, 35, 54, 58, 53, 52).




SEMOGA BERMANFAAT, TERIMAKASIH.

Komentar

Postingan populer dari blog ini

RELASI PENGURUTAN PARSIAL DAN KESETARAAN

GERBANG LOGIKA

HIMPUNAN