INDUKSI MATEMATIKA


Merupakan pembuktian deduktif, meski namanya induksi. Induksi matematika atau disebut juga induksi lengkap sering dipergunakan untuk pernyataan-pernyataan yang menyangkut bilangan-bilangan asli.
Perlu ditekankan bahwa induksi matematika hanya digunakan untuk membuktikan kebenaran dari suatu pernyataan atau rumus, bukan untuk menurunkan rumus. Atau lebih tegasnya induksi matematika tidak dapat digunakan untuk menurunkan atau menemukan rumus.

Prinsip Induksi Matematika
Untuk setiap bilangan bulat positif n, misalkan P(n) adalah pernyataan yang bergantung pada n. Jika
1.     P(1) benar dan
2.     untuk setiap bilangan bulat positif k, jika P(k) benar maka P(k + 1) benar
maka pernyataan P(n) bernilai benar untuk semua bilangan bulat positif n.
Untuk menerapkan prinsip ini, kita harus melakukan dua langkah:
Langkah 1 Buktikan bahwa P(1) benar. (langkah dasar)
Langkah 2 Anggap bahwa P(k) benar, dan gunakan anggapan ini untuk membuktikan bahwa P(k + 1) benar. (langkah induksi)
Perlu diingat bahwa dalam Langkah 2 kita tidak membuktikan bahwa P(k) benar. Kita hanya menunjukkan bahwa jika P(k) benar, maka P(k + 1) juga bernilai benar. Anggapan bahwa pernyataan P(k) benar disebut sebagai hipotesis induksi.
Untuk menerapkan Prinsip Induksi Matematika, kita harus bisa menyatakan pernyataan P(k + 1) ke dalam pernyataan P(k) yang diberikan. Untuk menyatakan P(k + 1), substitusi kuantitas k + 1 ke k dalam pernyataan P(k).

Langkah-Langkah Pembuktian Induksi Matematika
Dari uraian-uraian diatas, langkah-langkah pembuktian induksi matematika dapat kita urutkan sebagai berikut :
1.     Langkah dasar: Tunjukkan P(1) benar.
2.     Langkah induksi: Asumsikan P(k) benar untuk sebarang k bilangan asli, kemudian tunjukkan P(k+ 1) juga benar berdasarkan asumsi tersebut.
3.     Kesimpulan: P(n) benar untuk setiap bilangan asli n.

Pembuktian Deret
Sebelum masuk pada pembuktian deret, ada beberapa hal yang perlu dipahami dengan baik menyangkut deret.
Jika P(n) :  u1 + u2 + u3 + … + un = Sn , maka
P(1) :  u1 = S1
P(k) :  u1 + u2 + u3 + … + uk = Sk
P(k + 1) :  u1 + u2 + u3 + … + uk + uk+1 = Sk+1

Pembuktian Keterbagian
Pernyataan “a habis dibagi b” bersinonim dengan :
  • a kelipatan b
  • b faktor dari a
  • b membagi a
Jika p habis dibagi a dan q habis dibagi a, maka (p + q) juga habis dibagi a.
Sebagai contoh, 4 habis dibagi 2 dan 6 habis dibagi 2, maka (4 + 6) juga habis dibagi 2.

Pembuktian Pertidaksamaan
Berikut sifat-sifat pertidaksamaan yang sering digunakan:
1.  Sifat transitif
a > b > c  
  a > c  atau
a < b < c  
  a < c
2.  a < b dan c > 0    ac < bc  atau
a > b dan c > 0  
 ac > bc
3.  a < b    a + c < b + c  atau
a > b  
 a + c > b + c
Mari kita coba untuk latihan menggunakan sifat-sifat diatas untuk menunjukkan implikasi “jika P(k) benar maka P(k + 1) juga benar”.
Misalkan
P(k) :  4k < 2k
P(k + 1) :  4(k + 1) < 2k+1
Jika diasumsikan P(k) benar untuk k ≥ 5, tunjukkan P(k + 1) juga benar !
Ingat bahwa target kita adalah menunjukkan
4(k + 1) < 2k+1 = 2(2k) = 2k + 2k  (TARGET)
Kita dapat mulai dari ruas kiri pertaksamaan diatas
4(k + 1) = 4k + 4
4(k + 1) < 2k + 4        (karena 4k < 2k)
4(k + 1) < 2k + 2k      (karena 4 < 4k < 2k)
4(k + 1) = 2(2k)
4(k + 1) = 2k+1
Berdasarkan sifat transitif kita simpulkan
4(k + 1) < 2k+1
Mengapa 4k dapat berubah menjadi 2k ?
Berdasarkan sifat 3, kita diperbolehkan menambahkan kedua ruas suatu pertaksamaan dengan bilangan yang sama, karena tidak akan merubah nilai kebenaran pertaksamaan tersebut. Karena 4k < 2k benar, akibatnya 4k + 4 < 2k + 4 juga benar.
Darimana kita tahu, 4 harus diubah menjadi 2k ?
Perhatikan target. Hasil sementara kita adalah 2k + 4 sedangkan target kita adalah 2k + 2k.
Untuk k ≥ 5, maka 4 < 4k dan 4k < 2k adalah benar, sehingga 4 < 2k juga benar (sifat transitif). Akibatnya 2k + 4 < 2k + 2k  benar (sifat 3).


TERIMAKASIH, SEMOGA BERMANFAAT.

Komentar

Postingan populer dari blog ini

RELASI PENGURUTAN PARSIAL DAN KESETARAAN

GERBANG LOGIKA

HIMPUNAN